
pMatlab Takes the HPCchallenge

Ryan Haney, Hahn Kim, Andrew Funk, Jeremy Kepner, Charles Rader, Albert Reuther and Nadya Travinin
MIT Lincoln Laboratory, Lexington, MA 02420

Phone: 781-981-2514
Email Addresses: {haney, hgk, afunk, kepner, rader, reuther, nt}@ll.mit.edu

Abstract1
The HPCchallenge benchmark suite has been released by
the DARPA HPCS program to help define the
performance boundaries of future Petascale computing
systems. The suite is composed of several well known
computational kernels (STREAM, Top500, FFT, and
RandomAccess) that span high and low spatial and
temporal locality. These kernels also encompass key
aspects of embedded signal processing: vector
computations, matrix multiplies, corner turns and random
selection operations. MATLAB®2 is the primary high level
language used within the signal processing community and
is increasingly used for large system simulations and
quickly processing data in the field. The pMatlab parallel
MATLAB toolbox provides the necessary global array
semantics to allow HPCchallenge to be implemented. The
results provide a unique opportunity to probe both the
relative (pMatlab vs. MATLAB) and absolute (pMatlab vs.
C/Fortran+MPI) merits of pMatlab. Specifically, for each
kernel in HPCchallenge we examine code size, maximum
problem size, and performance. We find pMatlab code to
be approximately 10x smaller than the equivalent C/MPI
code. The problem sizes possible using pMatlab scale
linearly with the number of processors (e.g. we are able to
FFT a 228 complex vector on 16 CPUS), and are
comparable to the corresponding C/Fortran+MPI code.
Finally, the scalability of the kernels approaches that of the
C/Fortran+MPI code.

Introduction
The HPCchallenge
The DARPA High Productivity Computing Systems
(HPCS) program has initiated a fundamental reassessment
of how we define and measure performance,
programmability, portability, robustness and, ultimately,
productivity in the HPC domain [1]. With this in mind,
HPCchallenge is designed to approximately bound
computations of high and low spatial and temporal locality
for Petascale systems. Figure 1 illustrates the approximate
spatial/temporal relationship of the different kernels and
the connections to important operations in the embedded

signal processing community. In addition, because
HPCchallenge consists of simple mathematical operations,
this provides a unique opportunity to look at language and
parallel programming model issues. This paper compares
traditional C/Fortran+MPI with MATLAB using global
array semantics.

1 This work is sponsored by Defense Advanced Research Projects
Administration, under Air Force Contract F19628-00-C-0002.
Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the United
States Government.
2 MATLAB is a registered trademark of The Mathworks, Inc.

(Matrix Multiply)

(Corner-turn)

(Vector Operations)

(Detection)

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

Top500 Linpack

Large FFTs

STREAM

RandomAccess

Figure 1: HPCchallenge kernels are plotted relative to
spatial and temporal locality.

The pMatlab Parallel Toolbox
The pMatlab toolbox implements global array semantics in
MATLAB. pMatlab provides high-level parallel data
structures and functions without removing the fast
prototyping capability and ease of use for which MATLAB
is well known [2]. This is achieved by combining operator
and function overloading with the concept of parallel data
and task mapping to provide implicit data and
computational parallelism. pMatlab is currently being
used for simulating signal processing chains and for rapid
analysis of sensor data in the field. The implementation of
the HPCchallenge using pMatlab offers a means for more
detailed performance analysis of pMatlab.

Parallel Implementation
STREAM consists of four local operations performed on
distributed vectors: copy, scaling, addition, and scaling
with addition. All of these operations are important in
signal and image processing. The STREAM benchmark
requires no interprocessor communication and is
implemented using simple distributed matrices.
 RandomAccess is designed to measure the random
access capabilities of a computer system. This is
accomplished by effectively computing the histogram of a
random number generator, replacing the typical addition

mailto:nt}@ll.mit.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
pMatlab Takes the HPCchallenge

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MIT Lincoln Laboratory, Lexington, MA 02420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

update with a bit level XOR operation. The ability to
randomly access data and perform logical operations are
standard “post detection” signal processing operations.
RandomAccess requires dynamic communications among
all the processors and is implemented using parallel sparse
arrays.
 The Top500 Linpack Benchmark uses an LU Solver to
solve a dense linear system of equations such as Ax=b.
Such an algorithm requires selecting and communicating
arbitrary parallel sub-matrices typical of many dense linear
algebra operations. At the core of LU are matrix-matrix
multiplies typical of multi-element beamforming
operations.
 The FFT kernel performs a 1-D Fast Fourier Transform.
The 1-D FFT is performed by computing two 2-D FFTs,
and then corner-turning the distributed matrix in between
the two computations. Both the local 2D FFTs and large
matrix corner turns are among the most important
operations in multi-sensor signal processing.

Results
For each kernel in the HPCchallenge, we examine code
size, maximum problem size, and performance on a Linux
cluster consisting of dual 3.0 GHz Xeon processors
connected with Gigabit Ethernet. Examining code size, we
find pMatlab code to be approximately 10x smaller than
the equivalent C/F77+MPI code. Approximate software
lines of code numbers for the HPCchallenge kernels are
shown in Table 1.
 The maximum problem sizes possible using pMatlab
scale linearly with the number of processors used and are
comparable to the corresponding C/F77+MPI code. Figure
2 illustrates this for the Top500 kernel. The maximum
input matrix size run on 16 processors (28K x 28K) is 16x
the maximum size that can be run on a single processor
(7K x 7K). Figure 3 shows the performance and
maximum problem size achieved in the pMatlab FFT code
relative to serial MATLAB, which uses FFTW [4] to
implement its Fourier Transform. The performance
scalability is typical of that seen in C/F77+MPI
implementation.

Table 1: C/Fortran + MPI vs. pMatlab software lines of
code for four of the HPCchallenge benchmarks.

0
1
2
3
4
5
6
7

0 4 8 12 16

pMatlab Top500 kernel

M
ax

 In
pu

t S
iz

e
(G

B
yt

es
)

Number of Processors
Figure 2: Maximum input matrix data sizes are plotted for
the Top500 kernel. Each matrix contained real double-
precision data.

0

1

2

3

0 4 8 12 16

pMatlab FFT1D

Parallel 1D Complex-to-Complex FFT

Number of Processors

R
el

at
iv

e
Pe

rf
or

m
an

ce

225
225

226 227 228

Figure 3: Performance (Flops) and scalability results are
plotted for the FFT kernel. Results are relative to the serial
MATLAB performance. Numbers next to the points indicate
the size of the complex vector used.

References
[1] HPCS - High Productivity Computer Systems.
http://www.highproductivity.org, 2004.
[2] Jeremy Kepner and Nadya Travinin. “Parallel
MATLAB: The Next Generation”. HPEC 2003 Workshop,
2003. C/F77+MPI /

pMatlab
Lines of

code
C/F77 +

MPI
pMatlab

[3] Jack Dongarra. “Performance of Various Computers
Using Standard Linear Equations Software”. University of
Tennessee, Knoxville TN.
http://www.netlib.org/benchmark/performance.ps, 2004.

~851441STREAM

~2101225Random
Access [4] FFTW Fastest Fourier Transform in the West.

http://www.fftw.org, 2004. ~1572~1100FFT

~5000 ~25200Top500

http://www.highproductivity.org/
http://www.netlib.org/benchmark/performance.ps
http://www.fftw.org/

Haney - 1
HPEC 9/28/2004

MIT Lincoln Laboratory

pMatlab Takes the HPCchallenge

Ryan Haney, Hahn Kim, Andrew Funk, Jeremy Kepner,
Charles Rader, Albert Reuther and Nadya Travinin

HPEC 2004

This work is sponsored by the Defense Advanced Research Projects Administration under Air Force Contract F19628-00-C-
0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed
by the United States Government.

* This work is sponsored by Defense Advanced Research Projects Administration, under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory
Haney - 2

HPEC 9/28/2004

Motivation and Goals

• Motivation
– The DARPA HPCS program has created the HPCchallenge

benchmark suite in an effort to redefine how we measure
productivity in the HPC domain

– Implementing the HPCchallenge benchmarks using pMatlab
allows a unique opportunity to explore the merits of pMatlab
with respect to HPEC

• Goals
– Compare traditional C/MPI with pMatlab. Measurements of

productivity include:
• Maximum problem size: Largest problem that can be solved or fit

into memory
• Execution performance: Run-time performance of the benchmark
• Code size: Software lines of code (SLOC) required to implement

the benchmark

MIT Lincoln Laboratory
Haney - 3

HPEC 9/28/2004

HPCchallenge Relevance to HPEC

(Vector Operations)
Top500
(Matrix Multiply)

FFT
(Corner-turn)

STREAM

RandomAccess
(Detection)

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity
Temporal Locality

• HPCchallenge benchmarks
encompass key embedded
signal processing operations

– FFT: Distributed corner turn
and FFTs important in multi-
sensor signal processing

– RandomAccess: Random
data accesses typical of
“post detection” operations

– Top500: Matrix-matrix
multiplies typical of multi-
element beamforming

– STREAM: Distributed vector
operations common to
signal processing

MIT Lincoln Laboratory
Haney - 4

HPEC 9/28/2004

FFT Results

Algorithm

Software Code Size

M
ax

im
um

 P
ro

bl
em

Si

ze
 in

 M
em

or
y

(G
B

)
Ex

ec
ut

io
n

Pe
rf

or
m

an
ce

(G

FL
O

PS
)

CPUs

C/MPI pMatlab Ratio
SLOC 2509 72 35

• pMatlab memory scalability
comparable to C/MPI (128x on 128
CPUs)

• pMatlab execution performance
comparable to C/MPI (55x on 128
CPUs)

• pMatlab code size is 35x smaller than
C/MPI

p
0

p0

p1

:

pN

p
N

FFT rows FFT columns

corner
turn

..p
1

0.1

1

10

100
pMatlab
C/MPI

32-bit
limitation

128x

0.01

0.1

1

10

1 2 4 8 16 32 64 64x2

pMatlab
C/MPI

55x

• Memory scalability comparable to C/MPI
on nearly all of HPCchallenge (for 128
CPUs). Allows MATLAB users to work on
much larger problems.

• Execution performance comparable to
C/MPI on nearly all of HPCchallenge (for
128 CPUs). Allows MATLAB users run
their programs much faster.

• Code size much smaller. Allows MATLAB
users to write programs much faster than
C/MPI

• pMatlab allows MATLAB users to
effectively exploit parallel computing, and
can achieve performance comparable to
C/MPI.

HPCchallenge Benchmark Results: C/MPI vs. pMatlab

Benchmark Results SummaryBenchmark Results SummaryBenchmark Results Summary

ConclusionsConclusionsConclusions

66xpMatlab (3x), C/MPI
(35x)

pMatlab (86x),
C/MPI (83x)Top500

6xComparableComparable (128x)Random Access

8xComparable (128x)Comparable (128x)STREAM
Comparable (128x)

Maximum Problem
Size

35xComparable (55x)FFT

Code Size: C/MPI to
pMatlab ratio

Execution
Performance

This work is sponsored by Defense Advanced Research Projects Administration, under Air Force Contract F19628-00-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Local BenchmarksLocal Benchmarks
• DGEMM (matrix x matrix

multiply)
• STREAM

– COPY, SCALE, ADD, TRIAD
• RandomAccess
• FFT

• Four key benchmarks have significant
relevance to HPEC
– FFT: Distributed corner turn

and FFTs important in multi-sensor signal
processing

– RandomAccess: Random data accesses
typical of “post detection” operations

– Top500: Matrix-matrix multiplies typical of
multi-element beamforming

– STREAM: Distributed vector operations
common to signal processing

• Multiple implementations
– C/Fortran, C/Fortran+MPI, MATLAB, pMatlab

FFT RandomAccess

PTRANSTop500

Local RandomAccessFFT

DGEMM STREAM

Global BenchmarksGlobal Benchmarks
• Top500 (High Performance

LINPACK)
• PTRANS — parallel matrix

transpose
• RandomAccess
• FFT

HPCchallenge Relevance to HPECHPCchallenge Relevance to HPEC

HPCchallengeHPCchallengeHPCchallenge

mapA = map([1 2], ...
{}, ...
[0:1]);

mapB = map([2 1], {}, [0:1]);

A = rand(m,n, mapA);
B = zeros(m,n, mapB);
B(:,:) = A;

Data distribution type: Block, cyclic, or
block-cyclic. Defaults to block in this
case.

Specifies which processors to distribute the
matrix over. In this case, processors 0 and 1.

p0 p1 p2
Block

Block-cyclic

Cyclic

mapA and mapB are used to create distributed
matrices A and B with the following resulting
distributions:

m
Ap0 p1

1
1

n

p0
p1

B
1

m

1 n

Specifies that rows of the distributed matrix
will be distributed over 1 processor while
columns will be distributed over 2 processors.

Assignment of A onto B results in a
distributed corner turn.

A

p0 p1 p0
p1

BCorner Turn

pMatlab Goal: Maps and Distributed MatricespMatlab Goal: Maps and Distributed MatricespMatlab Goal: Maps and Distributed Matrices

pMatlab Software ArchitecturepMatlab Software ArchitecturepMatlab Software Architecture

pMatlabpMatlabpMatlab

Library Layer (pMatlab)Library Layer (pMatlab)

• Can build applications
with a few parallel
structures and functions

• pMatlab provides
parallel arrays and
functions
X = ones(n,mapX);
Y = zeros(n,mapY);
Y(:,:) = fft(X);

• Can build applications
with a few parallel
structures and functions

• pMatlab provides
parallel arrays and
functions
X = ones(n,mapX);
Y = zeros(n,mapY);
Y(:,:) = fft(X);

Vector/MatrixVector/Matrix CompComp TaskConduit

Application

Parallel
Library

Parallel
Hardware

Input Analysis Output

User
Interface

Hardware
Interface

Kernel LayerKernel Layer
Math (MATLAB)Messaging (MatlabMPI)

• Can build a parallel library
with a few messaging
primitives

• MatlabMPI provides this
messaging capability:

MPI_Send(dest,comm,tag,X);
X = MPI_Recv(source,comm,tag);

• Can build a parallel library
with a few messaging
primitives

• MatlabMPI provides this
messaging capability:

MPI_Send(dest,comm,tag,X);
X = MPI_Recv(source,comm,tag);

Lincoln Laboratory
LLGRID

•80 Node dual 2.8 & 3.06 GHz
Xeon (P4)
• 400 & 533 MHz front-side
bus
• 4 GB RAM memory per node
• Two 36 GB hard drives per
node10/100 Mgmt Ethernet
interface
• Two Gig-E Intel interfaces
• 1.02 TB Network Storage
• Running Red Hat Linux

LLAN
Switch

To
LLAN

Network Storage

Clusters

Cluster
Switch

Gigabit Ethernet

Resource Manager Gigabit Ethernet

Benchmark PlatformBenchmark PlatformBenchmark Platform

• Implement and analyze the performance
of HPCchallenge benchmarks using
pMatlab

• Optimize and add functionality to the
pMatlab toolbox

• Compare traditional C/MPI with MATLAB
using global array semantics.
Measurements of productivity include:
– Maximum problem size: Largest problem

that can be solved or fit into memory
– Execution performance: Run-time

performance of the benchmark
– Code size: Software lines of code (SLOC)

required to implement the benchmark

• pMatlab implements global array semantics in
MATLAB
– Global array semantics allow indexing and general

element access for distributed data

• Implementing the HPCchallenge benchmarks using
pMatlab allows a unique opportunity to explore the
merits of pMatlab with respect to high performance
embedded computing

MotivationMotivationMotivation

GoalsGoalsGoals

• The DARPA HPCS program has created the
HPCchallenge benchmark suite in an effort to
redefine how we measure productivity in the
HPC domain

• MATLAB® is the primary high level language
used within the signal processing community;
increasingly used for
– large system simulations
– processing data in the field

pMatlab Takes the HPCchallengepMatlab Takes the HPCchallengepMatlab Takes the HPCchallenge
Ryan Haney, Hahn Kim, Andrew Funk, Jeremy Kepner, Charles Rader, Albert Reuther, Nadya Travinin

M
ax

im
um

 P
ro

bl
em

Si

ze
 in

 M
em

or
y

(G
B

)
Ex

ec
ut

io
n

Pe
rf

or
m

an
ce

R

an
do

m
A

cc
es

v0
.5

 “
G

U
PS

”

Software Code Size

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1 2 4 8 16 32 64 64x2

pMatlab
C/MPI

CPUs

• pMatlab memory scalability
comparable to C/MPI (128x
on 128 CPUs)

• pMatlab execution
performance comparable to
C/MPI

• pMatlab code size is 6x
smaller than the C/MPI
implementation

0.1

1

10

100

1000
pMatlab
C/MPI

2x

128x

6101603SLOC
RatiopMatlabC/MPI

p
0

p0

p1

:

pN

p
N

Local Updates Global Updates

corner
turn

.

.
p
1

Algorithm

RandomAccess (v0.5) ResultsRandomAccess (v0.5) Results

0.1

1

10

100

1000

1 2 4 8 16 32 64 64x2

pMatlab Copy
pMatlab Scale
pMatlab Add
pMatlab Triad
C/MPI Copy
C/MPI Scale
C/MPI Add
C/MPI Triad

128x

Algorithm

Software Code Size

M
ax

im
um

 P
ro

bl
em

Si

ze
 in

 M
em

or
y

(G
B

)
Ex

ec
ut

io
n

Pe
rf

or
m

an
ce

 (G
B

/s
)

CPUs

0.1

1

10

100
pMatlab
C/MPI

128x

•pMatlab memory scalability
comparable to C/MPI (128x
on 128 CPUs)

•pMatlab execution
performance comparable to
C/MPI (128x on 128 CPUs)

•pMatlab code size is 8x
smaller than C/MPI

851441SLOC
RatiopMatlabC/MPI

= BACopy:

Scale:

Add:

Triad:

= α BA

= α BA + C

= BA pN..p1p0 + C pN..p1p0

pN..p1p0 pN..p1p0

pN..p1p0pN..p1p0

pN..p1p0 pN..p1p0pN..p1p0

pNp1p0 ..

STREAM ResultsSTREAM Results

p
0

p0
p1

:

pN

p
N

FFT rows FFT columns

corner
turn

.

.
p
1

0.01

0.1

1

10

1 2 4 8 16 32 64 64x2

pMatlab
C/MPI

55x

Algorithm

Software Code Size

M
ax

im
um

 P
ro

bl
em

Si

ze
 in

 M
em

or
y

(G
B

)
Ex

ec
ut

io
n

Pe
rf

or
m

an
ce

(G

FL
O

PS
)

CPUs

35722509SLOC
RatiopMatlabC/MPI

•pMatlab memory scalability
comparable to C/MPI (128x
on 128 CPUs)

•pMatlab execution
performance comparable to
C/MPI (55x on 128 CPUs)

•pMatlab code size is 35x
smaller than C/MPI

FFT ResultsFFT Results

(Matrix Multiply)

(Corner-turn)

(Vector Operations)

(Detection)

Top500

FFT

STREAM

RandomAccess

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

Algorithm
LU

Factorization
p0 p1

p3p2
p0 p1

p3p2
p0 p1

p3p2
p0 p1

p3p2

p0
p2
p0
p2

p0 p1 p0 p1 p0

p0 p1
p3p2

p0 p1
p3p2

p0 p1
p3p2

p0 p1
p3p2

p0
p2
p0
p2

p0 p1 p0 p1 p0

A

L

U

L
U

* x = b
Forward and

backward
substitution
to solve for x

M
ax

im
um

 P
ro

bl
em

Si

ze
 in

 M
em

or
y

(G
B

)
Ex

ec
ut

io
n

Pe
rf

or
m

an
ce

(G

FL
O

PS
)

Software Code Size
0.1

1

10

100

1000
pMatlab
C/MPI

4.5x

86x

• pMatlab maximum problem
size scales 86x on 128 CPUs

• pMatlab execution
performance scales 3x
– Removing index calculation

overhead will significantly improve

• pMatlab code size is 66x
smaller than C/MPI
implementation

6623515,561SLOC
RatiopMatlabC/MPI

CPUs

Top500 ResultsTop500 Results

0.1

1

10

100

1000

1 2 4 8 16 32 64 64x2

pMatlab
C/MPI

Array index
calculation
overhead

35x

3x

0.1

1

10

100
pMatlab
C/MPI

32-bit
limitation

128x

	Abstract
	
	Introduction

	Precis:
	Poster:
	Agenda:
	Agend:
	Abstract:

